Facing the Challenge of Human-Agent Negotiations via
Effective General Opponent Modeling-

Yinon Oshrat', Raz Lin' and Sarit Kraus'?
! Department of Computer Science
Bar-llan University
Ramat-Gan, Israel 52900
{linraz,sarit}@cs.biu.ac.il

2 Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742 USA

ABSTRACT

Automated negotiation agents capable of negotiating efficiently with
people must deal with the fact that people are diverse in their behav-
ior and each individual might negotiate in a different manner. Thus,
automated agents must rely on a good opponent modeling compo-
nent to model their counterpart and adapt their behavior to their
partner. In this paper we present the KBAgent. The KBAgent is an
automated negotiator that negotiates with each person only once,
and uses past negotiation sessions of others as a knowledge base
for general opponent modeling. The database is used to extract the
likelihood of acceptance and proposals that may be offered by the
opposite side. Experiments conducted with people show that the
KBAgent negotiates efficiently with people and even achieves better
utility values than another automated negotiator, shown to be effi-
cient in negotiations with people. Moreover, the KBAgent achieves
significantly better agreements, in terms of individual utility, than
the human counterparts playing the same role.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligen-
celntelligent agents

General Terms

Experimentation

Keywords

automated bilateral negotiation, opponent modeling

1. INTRODUCTION

Multi-issue multi-attribute negotiations surrounds our every day
life. Most of the time negotiations involve only two parties that
share an interest or conflicting preferences. This field has long been

*This research is based upon work supported in part by the U.S.
Army Research Laboratory and the U.S. Army Research Office
under grant number W911NF-08-1-0144 and under NSF grant
0705587.

Cite as: Facing the Challenge of Human-Agent Negotiations via Effec-
tive General Opponent Modeling, Yinon Oshrat, Raz Lin, Sarit Kraus,
Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May,
10-15, 2009, Budapest, Hungary, pp. 377-384

Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

377

the focus of researchers in the agents community and many auto-
mated agents designed for bilateral negotiations can be found in the
literature (e.g., [3, 4, 8, 13, 22]). Yet, only a few of these agents are
specifically designed to efficiently negotiate with people and are
evaluated in actual negotiation settings. One of the main difficul-
ties when negotiating with people is incomplete information about
the other party’s preferences and its dynamic behavior. Human be-
havior is diverse and cannot be captured by a monolithic model.
Humans tend to make mistakes, and they are affected by cognitive,
social and cultural factors, etc. [1, 10].

While the strategy of an automated agent might be the most ef-
ficient one, the effect of identifying and efficiently modeling the
other party has a tremendous effect on the agent’s success. For
example, negotiation over the same issues against parties from dif-
ferent countries, can result in distinct agreements, and it is vital that
the negotiator will be aware of these variations. It has been shown
that in different countries the attitude regarding negotiations and
the actions performed during them are quite different. A Chinese
negotiator will appear to concede more often while in the UK it is
common to use pressure tactics to impose a deal on the other party.
The same tactic, however, against a negotiator from Greece will
most likely backfire [5, 11].

In this paper we present the KBAgent who negotiates with each
person only once in multi-issue multi-attribute environments. The
KBAgent is an automated agent that was designed to improve the
performance of the QOAgent [13], an automated agent shown to be
an efficient automated negotiator with human negotiators in such
environments. The KBAgent incorporates a better learning mech-
anism which enables it to perform better than the QOAgent. In
essence, the KBAgent uses a database of past negotiation sessions
between specific agents (types of negotiators) to allow it to be more
efficient in negotiations with agents of that specific type. Based on
a database with past negotiation sessions, the agent performs of-
fline learning, which is based on the kernel based density estima-
tion ([23], Chapter 2). From the database the agent estimates the
probability of an offer to be accepted, the probability of it to be
offered and the expected average utility for the other party. These
probabilities are then used in its decision making component, either
when accepting an offer or to determine the agent’s concession rate.
Using the kernel based density estimation the KBAgent is capable
of using even small databases and does not have to rely on many
past negotiation sessions.

We consider a setting of a finite horizon bilateral negotiation
with incomplete information between an automated agent and a
human counterpart. The incomplete information is expressed as

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

uncertainty regarding the utility preferences of the opponent, and
we assume that there is a finite set of different agent types. The ne-
gotiation itself consists of a finite set of multi-attribute issues and
time constraints. In the experiments the KBAgent was matched with
people in a negotiation on a single domain. The agent performed
better, as measured in the average utility score, than the QOAgent.
When playing one of the parties, these results were also statistically
significant. This was the side in which the QOAgent’s performance
was not significantly better than those of people. Encouraged by
these results, we also compared the KBAgent’s performance to peo-
ple’s performance and we show that it performed significantly bet-
ter than people in both roles. Consequently we achieved our goal
of developing an agent that can negotiate significantly better than
people in any role it plays. In addition, we demonstrate that our
proposed solution also conforms to some properties of the Nash
bargaining solution. This gives us the theoretical basis required for
use of our technique in bilateral negotiation, and for the assumption
that offers proposed by the KBAgent will also be considered to be
accepted by the opponent.

This work contributes to research on the design of automated
negotiators by suggesting an innovative method for designing an
agent’s strategy based on past history of other agents. Previous
work in this field (e.g., [4, 8]) attempt to learn the opponent’s util-
ity directly and assume that utility model of the opponent exists.
However, it has been shown that people do not follow equilibrium
strategies [6, 15] nor do they maximize their expected utility or
behave rationally. Our work stems from our observation that the
agent’s strategy is mainly influenced by the probability of an agree-
ment to be accepted or offered by the other party. The main focus
of our work deals with the learning of these probabilities rather
than modeling the utility of the other party. Moreover, the learn-
ing method described in our work does not rely on the structure of
the utility function of the other party, but rather constructs a pref-
erence relation between the possible offers. As a result, our agent
is capable of learning from previous existing data, no matter which
type of agents participate in these negotiations. Thus, the KBAgent
has a generic learning mechanism, allowing it to be matched and
negotiate efficiently with many possible types of negotiators, given
that there are previous sessions (even a relatively small number of
sessions) with similar negotiators. Since most negotiations are one-
shot and not repeated we focus on general opponent modeling and
try to avoid modeling the exact person with whom the KBAgent
negotiates.

The rest of the paper is organized as follows. Section 2 provides
an overview of bilateral negotiation with incomplete information
and opponent modeling. Section 3 provides an overview of the
negotiation context, followed by Section 4 which presents the de-
sign of the KBAgent, including the opponent modeling and decision
making mechanisms. Section 5 describes the experimental setting
and methodology and reviews the results. Finally, Section 6 pro-
vides a summary and discusses future work.

2. RELATED WORK

Many of the approaches for modeling agents in the context of
multi-issue bilateral negotiations focus on modeling the agent util-
ity function [4, 8], with the underlying assumption that the util-
ity function of the other negotiator has the strongest effect on the
agent’s strategy. While this assumption might be true for rational
agents, it is quite problematic when automated negotiations should
be matched with people. Results from social sciences suggest that
people do not follow equilibrium strategies [6, 15] nor do they max-
imize their expected utility or behave rationally.

Some researchers suggest the use of special protocols to help in

378

the modeling process of the other side. Pasquier ef al. [18] propose
using an argumentation based protocol, which enables each side to
learn the interest of the other side and thus obtaining more informa-
tion regarding its preferences. Saha and Sen [20] devise a protocol
that promises envy-free Pareto Optimal solution when dealing with
rational agents. However, in this paper we confine ourselves to the
simple protocol of alternating offers ([17], p. 118-121) and try to
take a different approach to achieve general opponent modeling.

Saha et al. [19] propose a specific opponent modeling technique.
They use Chebychev’s polynomials to approximate the probability
function of the other side. Their method requires exploration stage
where information from random offers is used to approximate un-
derlying probability function. However, this also raises questions
whether one would want to propose random offers which might be
suboptimal only to obtain a better estimation of the counterpart.
Moreover the amount of data needed for this method to be prac-
tical is quite larger than the database size our agent works on and
achieves using it a good general opponent modeling.

Hindriks and Tykhonov [8] propose a Bayesian learning scheme
to learn the opponent model, which is based on learning its utility
function. However, their method is parametric and works well only
when the structure of the utility function is known. Moreover, they
did not evaluate the efficacy of their approach against people, but
rather using automated agents. We, on the other hand, try to ben-
efit from the knowledge we have regarding previous negotiation
sessions of people of the same population serving as the other ne-
gotiator, and we also demonstrate the efficacy of our agent against
people.

Cochoorn and Jennings [4] suggest the use of non parametric
kernel density estimation to learn the opponent model. While we
use the same method suggested by Coehoorn and Jennings, they
assume that their opponent strategy is known. This assumption is
not true when negotiating with people since their behavior is di-
verse. Furthermore, if we want to learn from past negotiations con-
ducted with people, the sparsity of the samples is a major issue and
the three dimensional learning scheme Coehoorn and Jennings de-
scribe in their paper may provide insufficient data, making their ap-
proach impractical. Lastly, Coehoorn and Jennings dealt only with
automated agents and did not show the efficacy of their approach
when negotiating with people.

Gal et al. [7] also deal with the problem of learning agents’
models from past interactions between humans. However, they
are focused on one shot games, while we focus on bilateral multi-
issue multi-attribute negotiation domains. Their learning method
is based on expectation maximization (EM), which is a parametric
learning method and thus assumes that a model of how the oppo-
nent behaves exists. This, however, is not the case in our situation.

Katz et al. [9] also suggested the use of general opponent mod-
eling. They were focused on single issue auctions and utilized a
reinforcement learning algorithm, which integrates virtual learn-
ing with reinforcement learning. However, their agent is tested in
a single-issue domain with repeated interactions that are used to
improve the learning and decision making mechanism. It is not
clear whether their approach would be applicable to negotiation
domains in which several rounds are made with the same opponent
and multi-issues offers are negotiated.

Lin et al. [13] also designed an automated agent and showed its
efficacy in negotiating well with people. However, their agent has
several drawbacks that we try to address in this paper. First, they
state that most of the agreements were reached by the agent accept-
ing the other party’s offers. Thus, their offer generation mechanism
seems to be an inefficient one. Moreover, their acceptance of offers
depended on a random threshold. Also, their agent’s strategy is

Yinon Oshrat, Raz Lin, Sarit Kraus

Facing the Challenge of Human-Agent Negotiations via Effective General Opponent Modeling

not flexible and in many of the negotiation sessions it repeatedly
proposes the same offer to the other party. Our agent, on the other
hand, incorporates a useful mechanism for generating offers and the
experiments indeed have shown that more agreements are reached
by the other party accepting the automated agent’s offers.

3. PROBLEM DESCRIPTION

We consider the problem of efficient general opponent modeling
as a key to improving the performance of an automated negotiator.
We deal with a bilateral negotiation in which two agents negotiate
once to reach an agreement on conflicting issues. The negotiation
can also end if one of the agent opts out or if the deadline, denoted
dl, is reached, whereby, if no agreement is reached, a status quo
outcome, denoted SQ, is implemented. Let I denote the set of
issues in the negotiation, O; the finite set of values for each i € [
and O a finite set of values for all issues (O1 x Oz X ... X O|y)).
We allow partial agreements, L. € O; for each ¢ € I. Therefore an
offer is denoted as a vector 0 € O.

The negotiation session is divided into time periods, Time =
{0,1,...,dl}. Each agent is assigned a time cost which influences
its utility as time passes. In each period ¢ € Time of the negoti-
ation, if the negotiation has not terminated earlier, each agent can
propose a possible agreement, and the other agent can either ac-
cept the offer, reject it or opt out. Each agent can either propose an
agreement which consists of all the issues in the negotiation, or a
partial agreement. We use an extension of the model of alternating
offers ([17], p. 118-121), in which each agent can perform up to
M > 0 interactions with its counterpart in each time period.

The negotiation problem also involves incomplete information
about the preferences of the opponent. We assume that there is a
finite set of agent types. These types are associated with different
additive utility functions (e.g., one type might have a long term ori-
entation regarding the final agreement, while the other type might
have a more constrained orientation). Formally, we denote the pos-
sible types of agents as Types = {1,...,k}. Given [l € Types,
1 <1 < k, we refer to the utility of an agent of type [as u;, and
w : {(OU{SQ}U{OPT}) x Time} — R. Each agent is given
its exact utility function. The negotiators are aware of the set of
possible types of the opponent. However, the exact utility function
of the rival is private information.

4. AGENT DESIGN

The design of the KBAgent is built on top of the design of an-
other automated agent, the QOAgent [13], which has been shown
to be an efficient automated negotiator, especially with respect to
negotiating with humans. For this reason, we also compare the
KBAgent’s results to those of the QOAgent and find whether indeed
our agent can negotiate even better than the QOAgent. In addition,
we also use the simulation environment provided by the QOAgent,
which is rich and supports bilateral multi-issue and multi-attribute
negotiations, both with human counterparts and automated agents.

The main difference between the KBAgent and other automated
agents is its inherent design, which builds a general opponent model.
KBAgent utilizes past negotiation sessions of other agents as a knowl-
edge base for the extraction of the likelihood of acceptance and of-
fers which will be proposed by the other party. These data are used
to determine which offers to propose and which offers to accept.
One of the main advantages of the KBAgent is that it can also work
well with small databases of negotiation sessions. In the following
subsections we elaborate on the offline general opponent modeling
method and the online decision making method during the negoti-
ations.

379

4.1 General Opponent Modeling Component

This component is responsible for generating the general oppo-
nent modeling. We also show below that the overall complexity of
the proposed algorithm is O(|Types| - |Time| - nlog(n)), where
n is the total number of possible offers in the domain. Note that
the general opponent modeling is done offline and not during the
negotiation process itself.

The KBAgent performs what is called a Kernel based Density
Estimation (KDE) of the negotiation sessions in the database ([23],
Chapter 2). KDE is a nonparametric technique for estimating the
probability functions based on samples, and can also be viewed as
a smoothing technique based on samples. The use of kernel based
density estimation was chosen for several reasons. First, it is an
a-parametric approach that does not assume a model of the other
side, just like the data we expect to have in our database. Second, it
has a low computation complexity. The complexity of performing
KDE on a sample of size m is O(m log(m)). Third, it can perform
well even with small data sets.

The KBAgent uses the KDE method to estimate the probability
of each offer to be proposed by the other party during a given turn.
In addition, the database is used to calculate the probability of each
offer to be accepted by the other side during any turn. We denote
by Q(0) the estimated probability of each offer 0 € O to be ac-
cepted at any given time by the opposite party and by P(d,t) the
probability that the opposite party would propose offer o’ during a
given turn t. These probabilities will be used later in the decision
making process, as described in Section 4.2.

The database of past negotiations includes logs of past negotia-
tion sessions between two sides in the specified domain. The nego-
tiation sessions include all offers made by the two parties in each
turn and whether or not the offers were accepted. The negotia-
tion sessions may be collected from any population, not necessarily
similar to the one which the KBAgent negotiates with.

The estimation of the probabilities is done separately for each
possible agent type. If the negotiation sessions in the database are
not labeled with the type of the agent, the type is elicited using
a simple Bayes’ classifier (similar to the one used for estimating
the believed type of the other party during the negotiations, as dis-
cussed in Section 4.3). To estimate the probability of offers being
proposed by the agent of a given type we extract from the data-
base all offers proposed by the agents of that type in any given turn
t,1 <t < dl. To apply the KDE algorithm all offers have to
be assigned a unique numerical value, thus we order the offers by
their utility values of the other side and rank them, such that the
offer with the highest possible utility value is ranked 1. Then, the
KDE is applied and the results also include a smooth probability
value even for agreements that were not part of the samples in the
database. Since the KDFE algorithm is used each turn, the overall
complexity is O(|Time|n log(n)).

To estimate the probability the other side will accept an offer dur-
ing the negotiation we extract from the database all the offers ever
accepted or proposed by at least one negotiator playing the role of
the other party (under the assumption that if anyone had proposed
an offer they would also accept it when proposed the same offer).
We will refer to them as “acceptable offers". For each offer during
the negotiation that the KBAgent proposes, the acceptance proba-
bility is calculated by computing the ratio between (a) the number
of the offers from the acceptable offer list that have a utility value
for the other party lower than the utility value of the proposed offer,
and (b) the total number of offers in the acceptable list of the other
party. The complexity of this process is basically dominated by the
sorting of the offers, and thus it is O(n log(n)). We use the follow-
ing example to demonstrate this. Assume that the database contains

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

sessions in which people proposed offers with the following utili-
ties: {400, 380, 300, and 200}. Also assume that they accepted an
offer with a utility value of 280. Thus, the acceptable offers list
will contain the offers with the following utility values: {400, 380,
300, 200, and 280}. Now assume that we would like to calculate
the probability that the other party will accept an offer with a util-
ity value of 290. Since there are two agreements in the acceptable
list with a utility value lower than 290 (280 and 200) the estimated
probability of acceptance is 2/5 = 0.4.

Finally, from the database we calculate the average expected util-
ity of the other party. This is done by averaging the final utility
scores of all agreements reached in the negotiation sessions (no
matter which turn the agreements were reached). We denote this
average as ExpectedOppAvg. The complexity for calculating this is
O(n).

4.2 The Decision Making Component

The decision making valuation component takes into account the
agent’s utility function, as well as the believed type of opponent
(note that the believed type of opponent is also influenced by the
offers proposed by the opponent, as described in Section 4.3). This
data is used both for deciding whether to accept or reject an offer
and for generating an offer. In our settings, although several of-
fers can be proposed each time period, we restrict the agent to a
single offer in each period. This is done due to the fact that our
mechanism for generating offers only produces one distinct offer
at a given time period. The opponent, on the other hand, is free
to propose several offers, and the agent can respond to all the of-
fers, which actually occurred in the experiments. We demonstrate
the efficacy of KBAgent’s decision making process using experi-
ments with people in an environment of incomplete information, as
described in Section 5.

4.2.1 Generating Offers

One of the main drawbacks that Lin ef al. [13] state concern-
ing their QOAgent is that most of the agreements reached in ne-
gotiations in which their agent was involved were offered by the
human counterpart. In addition, most of the time, their agent re-
peatedly proposed the same offer and did not generate new offers
as time progressed. We build on the same generating offer mecha-
nism that was implemented in the QOAgent but invoke a different
strategy for the generation of offers. As opposed to the QOAgent,
the KBAgent implements a concession oriented strategy when gen-
erating offers. We also show in Section 4.2.3 that the offers pro-
posed by the KBAgent conform to some properties from classical
negotiation theory, which are mainly used by mediators.

The process of deciding what offers to propose at each turn con-
sists of three phases. First, a list of offers ranked by their QOValue
is generated. The QOValue of an offer is an alternative to the Nash
bargaining solution. In short, it tries, in a qualitative manner, to
evaluate the offers based on the agent’s utility and based on the
likelihood of their acceptance by the other party (c.f. [13] for more
details). The QOValue of an offer is calculated using the following
Formula:

QOValue(d) = min{ao,[o} (1)
where o, = ranke(0) - luq(0)
and o = [lua(0) + lup(0)] - ranky(d)

where rank(-) is the ranking value of an offer, which is associated
with each offer and a given utility function u. The rank number of

380

an offer 0 € O is calculated using the following formula:

order(0,O)

rank(0) =

@)
where order(-, -) is the ordering function which orders the offer &
in an ordinal scale between 1 and |O| according to its utility value
compared to all other offers in O. lu(-) denotes the Luce number
of an offer [14], which is a non-negative number that is associated
with each offer. The Luce number of an offer 6 € O is calculated
using the following formula:

(@) = 9
@ zeo W)

After calculating the QOValue of each offer, the KBAgent or-
ders all offers by their QOValue. The offer with the maximal QO-
Value is the first offer the KBAgent proposes. The second phase
is to construct a new list which will be the one from which of-
fers will be proposed. This new list is based on the sorted of-
fers by their QOValue, in which the utility values for the KBAgent
are above the value of the status quo. In addition, the KBAgent
discards all offers with a lower QOValue that do not improve the
other party’s utility from offers with a higher QOValue. That is,
if QOValue(0;) < QOValue(0;) and wopp(0;) < Uopp(0;) the
offer 0; will be removed from the proposal list. The last phase is
deciding which offer to propose each turn. As mentioned earlier,
the first offer that is proposed is the one with the maximal QOValue.
The other offers are picked from the ordered list based on the con-
cession rate the KBAgent applies and are chosen with a decreasing
QOValue for the agent and an increasing utility value for the other
party. Note that while we assume that the other party is not ratio-
nal, we refer to the case that it is not maximizing its expected utility,
thus it should still prefer accepting offers with higher utility values
than lower ones. The concession rate is determined such that af-
ter passing 80% of the negotiation turns, the KBAgent will propose
the offer which is as closest to the ExpectedOppAvg, that is, the
average expected utility value of the other party, as estimated from
the database of past negotiations. In this way the KBAgent makes
concessions while offering agreements which are still efficient for
it. The concession rate basically determines the order in which of-
fers in the offer list will be proposed. Thus, even if after 80% of
the turns the other side rejects the offer, the KBAgent continues to
propose offers from its list based on the concession rate.

Listing 1 describes the pseudo-code of the algorithm for generat-
ing the proposed offers and the concession rate. It is easy to observe
that the complexity of the algorithm for generating the offers list is
dominated by the complexity of sorting, and thus the overall com-
plexity is O(n log(n)). We will demonstrate KBAgent’s offer gen-
eration mechanism using the following example. Assume that in a
given negotiation session there are 5 turns and 10 possible offers.
Table 1 lists the possible offers sorted by their QOValue. Based on
the utility value of each offer for the other party it also lists the final
ordered list of offers from which the KBAgent will propose offers to
its counterpart. Now, assume that the average expected utility value
of the opposite side, as estimated from the database, is 440. Based
on KBAgent’s algorithm, after 80% of the turns, that is, after turn 4
(5-0.8 = 4), it should propose offer #7, which is the first one with
a higher utility value for the other party than the average expected
utility determined from the database. This offer is the fifth offer in
the ordered list of offers and thus the agent can now establish its
concession rates and the offers to be proposed each turn. Since the
KBAget aims to propose the fifth offer after turn 4 the concession
rate is determined as 5/4 = 1.25. Thus, the agent should first pro-
pose the first offer in the list and then follow the concession rate.

A3)

Yinon Oshrat, Raz Lin, Sarit Kraus

- Facing the Challenge of Human-Agent Negotiations via Effective General Opponent Modeling

Listing 1 Generating Proposed Offers

1: for all 0 € Database do
2: goValue = QOValue(0)
3: Insert 0'to QOSortedList
4: end for
5: QuickSort(QOSortedList) based on goValue
6: Insert QOSortedList(0) to OfferList
7: j = 0,mazUtil = wopp(QOSortedList(0)), concessionIndex =
0
8: for i = 1 to QOSortedList.length-1 do
9: util = Uopp(0s)
10: if (util > mazUtil) and (ug B(0) > ukp(SQ)) then
11: Insert QOSortedList(i + 1) to OfferList
12: mazUtil = util
13: j=j+1
14: if (concessionIndex = 0) and
(util > ExpectedOppAvg) then
15: concessionIndex = j
16: end if
17: endif
18: end for

19: concessionRate = concessionIndex /(0.8 - |Time|)

Offer Idx QOValue(d) wopp(d) Ordered List of offers
0 13.45 350 0
1 12.5 300 -
2 12 400 1
3 11.22 430 2
4 10.3 350 -
5 10 435 3
6 9.87 470 4
7 9.8 490 5
8 9 410 -
9 8.8 500 6

Table 1: Example of deciding which offers will be proposed.
Proposed offers are marked in bold.

That is, it should propose offers from its list in the the following
order: 0,1.25,2.5,3.75,5,6.25. The numbers are rounded down,
so the KBAgent eventually proposes the offers ordered 0, 1, 2, 3, 5
in its offer list, by that order. These offers are also marked in bold
in Table 1.

4.2.2 Accepting Offers

An important aspect of the agent’s strategy is the decision of
whether to accept or reject an offer. The KBAgent determines a time
dependent threshold to decide whether to accept or reject an offer.
Obviously, a good threshold should be used and not an arbitrary
one. In order to decide on the optimal threshold, the probabilities
learned from the database of past negotiations, are used.

Let ok B(t) be the offer proposed by the KBAgent at time ¢. The
acceptance threshold for the KBAgent is calculated per every turn ¢
of the negotiation and denoted by ;. We aim that o; will allow to
maximize the expected utility value of the agent for turn ¢. Thus,
we first calculate the expected utility value of the KBAgent for each
turn of the negotiation, denoted E(t,ay). Since the negotiation
terimated at turn dl we can use backward induction to calculate

381

this. The expected utility of the agent if the deadline is reached and
no agreement has been made equals the utility of the status quo.
Thus:

E(dl,aq) = uk(SQ) “)

In the preceding turn, if KBAgent’s offer was not accepted, it should
accept any agreement with a utility value higher than SQ. Other-
wise, the negotiation will terminate with a status quo outcome and
a lower utility value for the agent. Thus, its expected utility de-
pends on the probability that offers with a utility value higher than
the status quo would be proposed by the other party. For all offers
which are above the acceptance threshold of the KBAgent we sum
their probability of being proposed by the counterpart multiplied
by their utility value. For all other agreements, as the agent will
reject them, we sum the probability of the counterpart proposing
them multiplied by the value of the status quo. Formally,

E(dl — 1,adl—1) =
P(5, dl — 1)UKB(57 dl — 1)+

>

ugp(d,dl—1)>ag 1

P(3,dl — Vukp(SQ,dl — 1)

ugp(d,dl—1)<agqg 1

&)

For every other turn, we calculate the expected utility of the KBAgent
using a recursion. Basically, the expected utility of the agent at turn
i depends whether or not it accepts the proposed offer:

e For all offers above the agent’s acceptance threshold, the
KBAgent sums the multiplication of their utility value with
their probability of being proposed by its counterpart.

e For all offers below the agent’s acceptance rate, the KBAgent
calculates the probability that its offer will be accepted by
its counterpart in the next turn or if it is rejected, the agent’s
expected utility for the subsequent turn.

Formally,

E(t,ar)= Y.

ug B(0,t) >0

PO, t){Qoxs(t+1)) - ukp(oxps(t +1),t + 1)+

P(0,t)uxp(0,t)+

2

ug g (0,t)<ay
[1— Qoxe(t + D)E(E + 1, are1)}
(6)
The last calculation needed is the extraction of a; to determine
the acceptance threshold for each turn. To this end, we use the
derivative of Formula 6 by a;', and as we would like to maximize

the expected utility we find the o, value when the derivative equals
0. Thus we need to find the solution for the following equation:

Qoxs(t+ 1) uxp(oxs(t+1),t + 1)+
(1 - Qoxs(t+1))E(t+1,141)

ot =
O

Based on Formulas 5, 6 and 7 we can backtrack and calculate the
optimal acceptance threshold for each turn.

Note that these calculations are done separately for each different
believed agent type of the counterpart.

'In order to perform this derivation we replace o with ux 5 (8t, t)
where (3, is the threshold agreement, that is all offers with utility
values higher than the utility if it were accepted. We then take
derivative by .

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

4.2.3 An Alternative to the Nash Bargaining Solu-
tion

The Nash bargaining solution is defined by several characteris-
tics and is usually designed for a mediator in an environment with
complete information ([17], Chapter 15). The solution for the bar-
gaining problem is said to be a Nash solution if it satisfies symme-
try, efficiency, invariance and independence of irrelevant alterna-
tives. Basically, symmetry states that if both players have the same
bargaining power, then neither player will have any reason to accept
an agreement which yields a lower payoff for it than for its oppo-
nent. For example, for the solution to be symmetric, it should not
depend on the agent who started the negotiation process. Efficiency
states that two rational agents will not agree on an agreement if its
utility is lower for both of them than another possible agreement.
This solution is said to be Pareto-optimal. /nvariance states that for
all equivalent problems the solution is also the same. That is, two
positive affine transformations can be applied on the utility func-
tions of both agents and the solution will remain the same. Finally,
independence of irrelevant alternatives asserts that if new agree-
ments are added to the problem in such a manner that the status
quo remains unchanged, either the original solution is unchanged
or it becomes one of the new agreements.

It was shown by Nash [16] that the only solution that satisfies all
of these properties is the product maximizing of the agents’ utili-
ties. However, as we stated, the Nash solution is usually designed
for a mediator. Since the KBAgent negotiates with people and pro-
poses several offers, it cannot satisfy all of these properties. How-
ever, we can prove that the KBAgent’s strategy for proposing offers
conforms to most of the properties and a revised independence of
irrelevant alternatives property that allows for a set of possible so-
lutions instead of one unique solution.

THEOREM 4.1. The KBAgent's proposing offers mechanism sat-
isfies the properties of efficiency, invariance and independence of
irrelevant alternatives solutions.

Due to space limitations, we do not present the proof of the theo-
rem in the paper®. It is also interesting to note that the KBAgent’s
strategy does not guarantee that the offers it proposes will be better
for it than the Nash solution. There are cases in which, due to its
concession strategy, offers, with a lower utility for it than the Nash
solution, will be proposed. Nevertheless, our experiments showed
that the KBAgent’s strategy is efficient and it negotiates efficiently
with people and even achieves better utility values than another au-
tomated negotiator which offers always yields higher utility values
than the Nash bargaining solution.

4.3 Identifying The Opponent’s Type

The KBAgent uses the same reasoning mechanism as suggested
by [13] for identifying an opponent’s type. This mechanism is
based on the Bayesian updating rule that updates or revises beliefs
in light of new evidence a posteriori ([12], Chapter 2). As incom-
plete information in the environment is modeled by the existence
of several agent types, in each time period, the agent consults the
component in order to update its belief regarding the other party’s
type.

Recall that there are k possible types of agents. At timet = 0
the prior probability of each type is equal, that is, P(typei:o) =
%,V i € Types. Then, for each time period ¢ we calculate the a
posteriori probability for each of the possible types, taking into ac-
count the history of the current negotiation. This is done incremen-
tally after each offer is received or accepted. That is, the believed

’The proofs are accessible
http://www.cs.biu.ac.il/~linraz/opponentModeling/proofs.pdf

at

382

type is updated every time an offer is received or accepted, thus
eventually it is based on the overall total history thus far. There-
after, this value is assigned to P(type;). Using the calculated prob-
abilities, the agent selects the type whose probability is the highest
and proposes an offer as if it were the opponent’s type. Formally, at
each time period ¢ € Time and for each type € Types and 0; € O
(the offer at time period t) we compute:

P(3:|type’)P(type;)
P(o:)

where P(3;) = 3% | P(G|type’) - P(type!).
Now we can deduce the believed type of the other party for each
time period ¢, BT (), using the following equation:

P(type’|d:) = ©)

BT (t) = arg max P(type'|d;), V¢ € Time

i€ Types

©

5. EXPERIMENTS

We used a simulation environment, which is adaptable such that
any scenario and utility functions, expressed as multi-issue attributes,
can be used. We matched the KBAgent with people in negotiations
on a given domain. The KBAgent played the two different roles in
the negotiations, while the human counterpart accessed the negoti-
ation interface via a web address. The negotiation itself was con-
ducted using a semi-formal language. Each agent constructed an
offer by choosing the different values constituting the offers. Then,
the offer was constructed and sent in plain English to its counter-
part. To test the efficiency of our proposed agent, we conducted ex-
periments on a specific negotiation domain, in which the QOAgent
[13] was also run. We then compared the KBAgent’s performance
with that of the QOAgent and with that of people. In the following
subsections we describe our domain and the experimental method-
ology and we review the results.

We begin by describing the domain which was used in the exper-
iment and then continue to describe the experimental methodology
and results.

5.1 The Negotiation Domain

For the negotiation domain we choose a Job Candidate domain,
which is related to the subjects’ experience, and thus they could
better identify with it. In this domain, which was first described
in [13], a negotiation takes place after a successful job interview
between an employer and a job candidate. In the negotiation both
the employer and the job candidate wish to formalize the hiring
terms and conditions of the applicant. The issues under negotiation
are: (a) salary, (b) job description, (c) social benefits, (d) promotion
possibilities, and (e¢) Working hours. In this scenario, a total of
1,296 possible agreements exist.

Each turn in the scenario equates to two minutes of the negotia-
tion, and the negotiation is limited to 28 minutes. If the sides do not
reach an agreement by the end of the allocated time, the job inter-
view ends with the candidate being hired under a standard contract,
which cannot be renegotiated during the first year. This outcome is
modeled for both agents as the status quo outcome.

Each side can also opt-out of the negotiation if it feels that the
prospects of reaching an agreement with the opponent are slim and
it no longer possible to negotiate. Time also has an impact on the
negotiations. As time advances the candidate’s utility decreases,
as the employer’s good impression of the job candidate decreases.
The employer’s utility also decreases as the candidate becomes less
motivated to work for the company.

The utility values range from 170 to 620 for the employer role
and from 60 to 635 for the job candidate role. The status quo value

Yinon Oshrat, Raz Lin, Sarit Kraus

Facing the Challenge of Human-Agent Negotiations via Effective General Opponent Modeling

in the beginning of the negotiation was 240 for the employer and
160 for the job candidate. Both players had a fixed loss per time
period — the employer of -6 points and the job candidate of -8 points
per period.

As there is also incomplete information, we assume that there
are three possible types of agents for each role. These types are as-
sociated with different additive utility functions and characterized
as ones with short-term orientation regarding the final agreement,
long-term orientation and a compromising orientation.

5.2 Experimental Methodology

We tested our agent against human subjects, all of whom are
computer science undergraduate and graduate students. 28 human
subjects were used to evaluate the performance of the KBAgent.
The people negotiated against the KBAgent on the Job Candidate
domain. We then compared the performance of the KBAgent in
each role it played to similar simulations that were done using the
QOAgent (which involved 34 people). The subjects did not know
any details regarding the automated agent with which they were
matched. The outcome of each negotiation was either reaching a
full agreement, opting out, or reaching the deadline.

The KBAgent performed offline learning using the KDE tech-
nique on past negotiation sessions to estimate the different proba-
bilities of accepting and proposing offers by the three different pos-
sible types of negotiators for each role (the Employer and the Job
Candidate). The database consisted of 20 past negotiation sessions
of 40 people negotiating one against the other as one specific agent
type. To allow learning of the other types as well, we used auto-
mated agents that were designed by people to create additional ne-
gotiation sessions. 14 people had to design an automated negotia-
tor agent to perform negotiations in the same domain and settings.
These agents were matched against each other, each time given a
different role and a different type of utility. 40 negotiation sessions
were created for each of the other two types of agents. These ses-
sions were added to the database to facilitate learning based on the
KDE method.

Prior to the experiments, the subjects were given oral instruc-
tions regarding the experiment and the domain. The subjects were
instructed to play based on their score functions and to achieve the
best possible agreement for them.

5.3 Experiment Results

The main goal of the experiments was to verify that the KBAgent
is an efficient negotiator capable of negotiating with human coun-
terparts. In addition, we wanted to evaluate its performance in
comparison to the QOAgent’s performance, which has been shown
in the literature to be effective when negotiating with people [13].
Throughout this section, we also evaluate the significance of the
results. The significance test was performed by applying the #-test
and the Wilcoxon test on the results. The t-fest is a statistical hy-
pothesis test in which the test statistics has a t-distribution if the
null hypothesis is true. This test requires a normal distribution of
the measurements ([2], Chapter 3). Thus, it is used in our analysis
to compare the utility values of the different simulation methods,
which have continuous values. To analyze the significant differ-
ences in the end turn we use the Wilcoxon signed-rank test, which
is a non-parametric alternative to the paired t-test for the case of two
related samples or repeated measurements on a single sample. This
test does not require any assumptions regarding the distribution of
measurements ([21], Chapter 5).

Table 2 summarizes the results of the KBAgent when negotiating
against people compared to the results of the QOAgent negotiating
against people. First, we examine the final utility values of all the

383

KBAgent QOAgent p-value
Employer
Average utility 468.86 417.37 0.08
Stdev of utility 36.96 135.92
% offers accepted by human 21.43% 7.14%
Average sum of utilities 839.36 737.87 0.04
Average end turn 5.57 5.06 0.76
Stdev of end turn 3.06 2.1
Job Candidate
Average utility 482.71 397.83 0.001
Stdev of utility 57.51 85.96
% offers accepted by human 50% 11.76%
Average sum of utilities 863.14 829.61 0.17
Average end turn 7.14 5.37 0.08
Stdev of end turn 2.88 4.32

Table 2: Average utility scores, standard deviations, % of ac-
cepted offers, sum of utility scores and average and standard
deviations of the end turns of humans versus automated agents.

negotiations for each role, and the sums of the final utility values.
When the KBAgent played the role of the Employer (Job Candidate)
it achieved an average utility value of 468.86 (482.71), the QOA-
gent playing the same role achieved an average value of 417.37
(397.83). While in both roles the KBAgent achieved higher utility
values, it is only significant when it played the role of the Job Can-
didate (using the 2-sample z-test: p < 0.001). In addition, more
agreements were reached due to offers proposed by the KBAgent
when compared to the QOAgent. While only 7.14% and 11.76% of
the agreements that were reached when the QOAgent was involved
(in the Employer and Job Candidate roles, respectively) were due
to offers proposed by the automated agent, 21.43% and 50% of
the agreements that were reached when the KBAgent played the
Employer and Job Candidate role, respectively, were the result of
offers proposed by the automated agent. In the case of the Job Can-
didate this increase is also significant (using x? test, p < 0.02).
The high increase in the percentage of agreements reached when
the KBAgent played the role of the Job Candidate can also explain
the fact that in this role the utility values for the KBAgent were
significantly higher than values for the QOAgent.

The sum of both agents can be used as an indication regarding the
social welfare of the automated agent. Comparing the sum of utility
values of both negotiators when the KBAgent played a role to the
cases in which the QOAgent played a role, we can see that the sum
is higher in the cases in which the KBAgent was involved (839.36
compared to 737.87 in the Employer role and 863.14 compared to
829.61 in the Job Candidate role).These results are significant only
in reference to the Employer role (using the 2-sample t-test: p <
0.04). That is, the KBAgent not only achieves better agreements,
but also enables an increased distribution of the utility points. In
the case of the Job Candidate role, people negotiating against the
KBAgent achieved higher utility values than when playing against
other people or against the QOAgent.

We also examined the end turn in which agreements were reached
when either of the automated agents were involved. While negotia-
tions ended faster when the QOAgent was involved, the results are
insignificant statistically. The fact that negotiations lasted longer
when the KBAgent was involved can be contributed to the fact that
its acceptance threshold was more sophisticated than the random
one implemented by the QOAgent, allowing the KBAgent to achieve
better agreements.

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

Average Utility Stdev p-value
Employer
KBAgent 468.86 36.96
People vs. People 408.89 106.46 0.02
People vs. QOAgent 431.78 80.83 0.05
People vs. KBAgent 380.43 48.55 <0.001
Job Candidate

KBAgent 482.71 57.51
People vs. People 310.28 143.60 <0.001
People vs. QOAgent 320.50 112.71 <0.001
People vs. KBAgent 370.50 58.87 <0.001

Table 3: Average utility scores and standard deviations of hu-
man negotiators. p-values are compared to the KBAgent’s
scores.

These results are encouraging due to the efficacy of the KBAgent
and owing to the fact that it enables the parties to achieve better
agreements than the QOAgent. We continued to compare the re-
sults of the KBAgent to the results of human negotiators. The ne-
gotiation sessions involved 36 undergraduate and graduate students
playing once against each other (a total of 18 simulations). Table
3 summarizes the average utility values, standard deviations and p-
values comparing the results of the KBAgent to that of the people.
The results indicate that the KBAgent achieves significantly bet-
ter utility values than those achieved by human negotiators either
against other human negotiators or against other automated agents
(the QOAgent and the KBAgent).

6. CONCLUSIONS

In this paper we presented a novel approach for general opponent
modeling, proposing offers using a concession method and accept-
ing offers using a sophisticated threshold. We showed that our ap-
proach allows the automated agent negotiate efficiently with peo-
ple and even perform better than another state-of-the-art automated
agent. The results demonstrate that the KBAgent achieved signifi-
cantly higher utility values than the human players. In comparison
to the other automated agent (the QOAgent) it achieved higher util-
ity values and in the case of one of the two roles, even achieved
significantly higher utility values.

As people negotiate in diverse ways and mostly in one-shot ne-
gotiations a general opponent modeling approach could yield better
results than specific opponent modeling, as we indeed shown in the
experiments. Moreover, the approach we apply has a low compu-
tation complexity and can work well on sparse databases.

Future work will match the KBAgent on additional domains to
test the generality of its design and to bolster the confidence of the
generated results.

7. REFERENCES

[1] M. H. Bazerman and M. A. Neale. Negotiator rationality and
negotiator cognition: The interactive roles of prescriptive and
descriptive research. In H. P. Young, editor, Negotiation
Analysis, pages 109-130. The University of Michigan Press,
1992.

[2] S.R. Brown and L. E. Melamed. Experimental Design and
Analysis. Sage Publications, Inc., CA, USA, 1990.

[3] A. Byde, M. Yearworth, K.-Y. Chen, and C. Bartolini.
AutONA: A system for automated multiple 1-1 negotiation.

384

In Proceedings of CEC’03, pages 59-67, 2003.

R. M. Coehoorn and N. R. Jennings. Learning on opponent’s

preferences to make effective multi-issue negotiation

trade-offs. In Proceedings of ICEC 04, pages 59—68, 2004.

R. Cohen. Negotiating Across Cultures: Communication

Obstacles in International Diplomacy. United States Institute

of Peace Press, Washington, D.C., 1991.

1. Erev and A. Roth. Predicting how people play games:

Reinforcement learning in experimental games with unique,

mixed strategy equilibrium. American Economic Review,

88(4):848-881, 1998.

Y. Gal, A. Pfeffer, F. Marzo, and B. J. Grosz. Learning social

preferences in games. In Proceedings of AAAI-04, pages

226-231, 2004.

[8] K. Hindriks and D. Tykhonov. Opponent modelling in

automated multi-issue negotiation using bayesian learning.

In Proceedings of AAMAS 08, pages 331-338, 2008.

R. Katz, Y. Amichai-Hamburger, E. Manisterski, and

S. Kraus. Different orientations of males and females in

computer-mediated negotiation. Computers in Human

Behavior, 24(2):516-534, 2008.

D. A. Lax and J. K. Sebenius. Thinking coalitionally: party

arithmetic, process opportunism, and strategic sequencing. In

H. P. Young, editor, Negotiation Analysis, pages 153—193.

The University of Michigan Press, 1992.

M. LeBaron and V. Pillay. Conflict Across Cultures: A

Unique Experience of Bridging Differences. Nicholas

Brealey Publishing, Boston, MA, 2006.

[12] T. Leonard and J. S. J. Hsu. Bayesian Methods - An Analysis
for Statisticians and interdisciplinary Researchers.
Cambridge University Press, Cambridge, UK, 1999.

[13] R. Lin, S. Kraus, J. Wilkenfeld, and J. Barry. Negotiating
with bounded rational agents in environments with
incomplete information using an automated agent. A1/,
172(6-7):823-851, 2008.

[14] R. D. Luce. Individual Choice Behavior: A Theoretical
Analysis. John Wiley & Sons, NY, 1959.

[15] R. D. McKelvey and T. R. Palfrey. An experimental study of
the centipede game. Econometrica, 60(4):803-836, 1992.

[16] J. F. Nash. The bargaining problem. Econ., 18:155-1622,
1950.

[17] M. J. Osborne and A. Rubinstein. 4 Course In Game Theory.
MIT Press, Cambridge MA, 1994.

[18] P. Pasquier, R. Hollands, F. Dignum, I. Rahwan, and
L. Sonenberg. An empirical study of interest-based
negotiation. In Proceedings of ICEC 07, pages 339-348,
2007.

[19] S. Saha, A. Biswas, and S. Sen. Modeling opponent decision
in repeated one-shot negotiations. In Proceedings of
AAMAS 05, pages 397-403, 2005.

[20] S. Saha and S. Sen. Negotiating efficient outcomes over
multiple issues. In Proceedings of AAMAS’ 06, pages
423-425, 2006.

[21] S. Siegel. Non-Parametric Statistics for the Behavioral
Sciences. McGraw-Hill, NY, USA, 1956.

[22] D. Traum, S. Marsella, J. Gratch, J. Lee, and A. Hartholt.
Multi-party, multi-issue, multi-strategy negotiation for
multi-modal virtual agents. In Proceedings of IVA’08, 2008.

[23] M. Wand and M. Jones. Kernel Smoothing. Chapman & Hall,
London, 1995.

(4]

(3]

(7]

(9]

[10]

(1]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

